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We describe the coupling of a cell-centered hydrodynamic scheme to a point-
centered finite element method simulating diffusive processes such as heat conduc-
tion and radiation transport. We also discuss procedures that compute the material
coefficients, the scheme advancing the radiation energy, and how to tally diffusion
boundary fluxes in sections with Dirichlet boundary data. To demonstrate the cou-
pling’s robustness and accuracy, we simulate the implosion of a radiatively driven
inertial confinement fusion capsule. The simulation, done on an unstructured, 3D,
tetrahedral grid, maintains spherical symmetry.2001 Academic Press

1. INTRODUCTION

The development of codes to simulate inertial confinement fusion (ICF) experime
is difficult because of the variety of equations which must be solved. At a minimur
such codes solve the equations of compressible hydrodynamics, heat conduction, radi
transport, laser energy deposition, and use equation-of-state (EOS) data for multiple
materials. Typically, the codes consist of separate packages coupled by a controlling n
ule. This paper describes the coupling in one such code, ICF3D [1], in which the arbitr
Lagrangian—Eulerian (ALE) hydrodynamics module [2] is based on cell-centered, disc
tinuous finite elements (FE) while the heat conduction and radiation transport modules
a conventional, point-centered, continuous, and piecewise differentiable FE scheme.
now widely accepted that cell-centered methods are the best choice to solve the equa
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of compressible hydrodynamics while, for diffusion equations, if the mesh is irregul
or unstructured, point-centered FE methods are superior. Thus, ICF3D mixes the two ¢
terings in order to avail itself of the best numerical methods for each package.

Since our approach is unconventional—traditionally cell-centered methods are emplo
for both schemes—uwe first review the development of diffusion schemes for radiatio
hydrodynamic codes in order to motivate our preference for mixing the two approaches
the following synopsis we focus attention on “fully-implicit” differencing (except coeffi-
cients such as the conductivity are evaluated at the previous time level) since such di
encing is more robust [3]. There is additional incentive for such temporal discretizatic
In applications such as radiation transport, the time atepvhen compared to the other
terms, is so large, that each time level effectively solves for the steady-state. Conseque
in these cases, second-order, temporal differencing yields a worse answer.

Our exposition begins with Kershaw [3], who presents a method to discretize a dif
sion equation on a two-dimensional, logically orthogonal quadrilateral mesh in cylindric
(R, Z2) coordinates. Kershaw's scheme solves for cell-centered unknowns, e.g., the a
age temperature inside the quadrilaterals. In the same paper, Kershaw lists the follov
desirable properties of the matrix approximating the diffusion operator:

1. second-order (spatial) accuracy;

2. nonnegative definitiveness negative eigenvalues and numerical stability;
3. symmetricity= energy conservation;

4. the M-matrix property= positivity of the solution.

Kershaw shows that for general quadrilateral meshes the above conditions cannot al
be satisfied and he opts to sacrifice the last one.

Pert [4] extends Kershaw’s analysis by examining how properties of the diffusion eqt
tion apply to its discretization. He stresses that the matrix approximating the diffusi
operator should be nonnegative definite and recalls the fundamental property of diffus
equations, that extrema decay in time. The latter property is shown to be satisfied for
discretized system if the resulting matrix is an M-matrix and differential.

One unfortunate aspect of the Kershaw and Pert (K&P) schemes is a loss of accu
on sufficiently distorted grids. For example, even if the diffusion coefficient is constat
and only the steady state solution is sought, and the exact solution is a linear functior
the coordinates, the K&P schemes do not reproduce it. This implies thasif linear
function (and the grid is sufficiently distorted), the discretizatioW 6fVu does not vanish.
To alleviate such errors, Shestakov, Harte, and Kershaw [5] propose to solve diffus
equations using finite elements. This method brings many benefits (symmetric, different
conservative, positive definite linear systems, and for triangular or tetrahedral grids, an e
means to guarantee the M-matrix property) but introduces the nontraditional approacl
point-centered unknowns.

Because of the difficulty in coupling point-centered diffusion to cell-centered hydr
dynamics, cell-centered diffusion schemes continue to be developed. For example, M
et al. [6] propose a cell-centered diffusion scheme (MDHW) for quadrilateral (logicall
orthogonal) grids which has two advantages over the K&P schemes: (13 Ifnear, the
discretization ofV - Vu does vanish and (2) the solution seems to converge with secor
order accuracy, regardless of the smoothness of the mesh. However, MDHW has the foll
ing disadvantages: (1) In addition to the cell-centered unknowns, edge-centered unknc
are introduced whicltriples the size of the linear system. (2) In general, the matrix i
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asymmetric. (3) For severely distorted meshes, the matrix is ill conditioned and althot
this may be alleviated by a “parallelogram fixup,” the fix degrades the accuracy; the disci
Laplacian no longer annihilates linear functions [6]. Moreover, it is not known whether t|
MDHW discretization of the diffusion operator is negative definite. If not, the resultin
linear systems may be ill posed.

To put cell-centered discretizations on a sounder level, Shasttkal; using the sup-
port operators (SO) method, propose a scheme for logically orthogonal quadrilateral g
(Shashkov and Steinberg [7], Hymatal.[8]). The SO scheme of Shashkov and Steinbert
(S&S) [7], has theoretical advantages over MDHW since itis based on a careful construc
of discrete operators that mimics the analogous properties of the differential operators. .
result, the S&S discretization is symmetric, differential, conservative, and positive defin
There are two variants of S&S which emanate from discretizing a diffusion equation
“flux” form,

U—ug=—-Atv.f, f=-DVu, Q)

wheref is the flux andup denotes the old time level. The “temperature-based” optio
substitutes the second equation into the first which yields a second-order equation fc
Unfortunately, if solving on a nonorthogonal mesh, the S&S spatial differencing produce
denseamatrix. Shashkov and Steinberg claim that this difficulty is overcome since in solvil
for u, one often resorts to iterative methods which only require computing matrix—vec
products. However, we note that as an intermediate step, S&S computes a discrete ve
the analogue of DVu, and this itself requires solving a banded linear system for the vect
components. The system couples components in both logical directions and has twic
many unknowns as the scalar, cell-centered temperatures. Hence, this intermediate s
a nontrivial computation.

Shashkov and Steinberg’s preferred, “flux-based” method to solve Eq. (1) is to substif
the first equation into the second thereby obtaining a single system for the flux vec
components. Unfortunately, this variant makes tacit assumptions about the differentiab
of up. The method definekusing a discrete analogue of the gradidnt Gu = —DVu
andappliesG to the first of Eq. (1) producing,

f + AtG(V - f) = Gu. 2

As a side note, since the “flux-based” method solves for vector components, in 2D, tt
are twice as many unknowns as cells.

Shashkov and Steinberg present results on a number of test problems [7]. Onein partic
the “Random MeshExample,” stands out since it was originally used by MDHW [6] as
proof of the lack of convergence of Kershaw’s scheme. Table |, which displays rest
collected from [6] and [7], presents errors using both “relatikg”and max norms—see
[6] and [7] for definitions. For comparison, Table | includes results obtained with our noc
FE schemé.

In [9], Morel, Roberts, and Shashkov (MRS) present a scheme that addresses the
ciencies of the prior MDHW [6] and S&S [7] schemes, viz., an asymmetric and nonpositi

2 Figure 8 displays part of the mesh.
3 The “exact” S&S solution given in [7] is incompatible with the problem formulation. Our simulations use th
S&S boundary conditions and we compare with the correct solution.
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TABLE |
Errors on Random Mesh Problent
NP K-L,° M-L,¢ S-,° F-L,f M-maxd S-max F-max
10 1.3-2 1.5-2 1.59-2 1.88-3 4.36-2 4.34-2 1.03-2
20 5.1-3 3.8-3 4.06-3 4.31-4 1.04-2 1.05-2 2.48-3
40 8.4-3 9.6-4 1.00-3 1.04-4 3.43-3 3.18-3 1.17-3
80 1.1-2 2.4-4 — 2.81-5 — — 3.49-4

a2 See [6] and [7] for specification. Error format: K; entry forN = 10 denotes B- 102,
® Denotes the number of mesh points in each coordinate direction.

¢ RelativeL , norm error for Kershaw scheme (cited in [6]).

4 Relativel, norm error for MDHW scheme [6].

¢ RelativeL, norm error for S&S scheme [7].

f RelativeL, norm error for our finite element (FE) scheme.

9 Max norm error for MDHW scheme.

" Max norm error for S&S scheme (cited in [7]).

" Max norm error for FE scheme.

definitive linear system for MDHW and a dense system in the temperature-based varian
S&S. The MRS proposal combines the support operator and the MDHW methodologi
The resulting matrix is sparse and symmetric positive definite (SPD), allowing usage
robust solvers such as preconditioned conjugate gradients (PCG). However, as in MD
both face-centereaindcell-centered unknowns are introduced, which in 2D makes the sy
tem sizeO(3N) whereN is the number of cells. In addition, one of the original MDHW and
S&S selling points is lost—on a skewed mesh, a linear steady solution is no longer rey
duced. The MRS scheme seems to be second order and its accuracy is comparable to

To conclude the discussion of the MDHW and SO schemes [6-9], we note that th
extremal properties are unknown. Since nearly all of the published results are for ste
state problems, the issue of unphysical transients (negative temperatures) is unresolvec
MDHW and SO schemes increase the number of unknowns; in 2D, the MDHW and MI
schemes by three times while the flux-based SO schemes by two times. If the sche
were extended to 3D meshes consisting of hexahedra, we expect the MDHW and M
schemes to increase the unknowns proportionally. Additionally, their extension to 3D i
not be trivial. Even if restricted to logically cubical grids, for inclusion in Lagrangian code:
such schemes must be extended to cells with nonplanar faces.

Because of such difficulties, we favor finite element methods. Their suitability for difft
sion equations is unquestionable. The only reservation may be that they are point cent
and their incorporation into traditional cell-centered Lagrangian codes is delicate, but t
is one subject of this paper.

In Section 2, we describe the scheme coupling the cell-centered hydrodynamic sch
[2] to point-centered methods used for the diffusion equations. Then, in Section 2.1 we af
it to a test problem coupling hydrodynamics to diffusion. To complete a description of t|
multiphysics code, Section 3.1 describes how we compute material properties such a:
thermal conductivity. Section 3.2 describes the scheme which advances the radiation en
density. (Time advancement of the heat conduction module is similar and easier since
one scalar equation appears.) The code applies conservative methods to equations w
in conservation form. During a run, an accounting is made of the existing energy, bound
fluxes, sources, etc. Section 3.3 describes how we tally the boundary flux alongside pc
with Dirichlet boundary conditions. Section 4 presents results on a problem coupling m
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of the physics packages. We simulate the implosion of a National Ignition Facility (NI
capsule driven with a uniform, steady 0.16 keV radiative source. Although the simulati
is spherically symmetric, we run it two ways—in 1D and 3D—in order to test the code
ability to maintain sphericity of the converging waves. Concluding remarks are given
Section 5. The code advances the equations using operator splitting. The appendix moti
our choice for the order in which the packages are called.

2. COUPLING PHYSICS MODULES

We denote the densities of mass, momentum, and total matter energydw and
pE. Other variables are the matter presspyeternal energ, specific heat,, radiation
energy densityg,, and the Planck and Rosseland averaged opagitiesdxg.

We now describe how the physics packages are coupled, paying special attentio
the reconciliation between changes due to cell-centered and point-centered schemes
code’s time cycle advances the physics packages in the following order:

1. hydrodynamicsp, pv, pE, p, ©),
material propertieéT, ¢y, kp, kR, . ..),
laser energy depositiqi),

heat conductioT),

radiation transpottg, , T),

6. synchronizatiorte, E, p).

aprwDd

In the above list, for each package, the parentheses enclose the comma-delimited er
affected. The appendix describes why the packages are advanced in this particular or

The variables linking the steps are the (matter) internal eneegd the temperature.
The hydrodynamic module is inherently ALE, which implies that matter is advected acre
cell faces. Step 2 transfers change®ifdue to the hydrodynamics) t6 and computes
coefficients used in subsequent steps. Step 3 com@ytes source of internal energy.
Steps 4 and 5 apply point-centered methods to diffusion equations &md E; . Lastly,
step 6 distributes changesnto e, E, andp. Hence, at the start of the next time step, the
fields are consistent, e.g., the energy (heat) deposited by the laser has been diffuset
coupled toE;, and the cells’ pressure is consistent with these changes.

The two fundamental variablesand T have different discrete representations. The
former is cell centered and the latter point centered. For the continuum analogues, t
changes are proportional to the specific heat,

oe
Ae= —| AT = ¢, AT,
aT |,

which implies that changes @from steps 2-5 occur at fixgd MakingeandT fundamental
(permanent) variables means that they are realigned in steps 2 and 5 by transferring
changesather than computing one variable from the other. We elaborate on this below,
note that this differs from a previous scheme [1] in which after the hydrodynamicTtep,
was constructed frora.

We now describe the coupling scheme in more detail. First, we note that the code has
hydrodynamic schemes, both cell centered; one is first order, another second order. Fc
former, for variables such agE andp, only cell averages are advanced. In the second-ordk
schemepE and p are allowed to vary in the cell, which in tetrahedral cells is equivaler
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to giving variables such gsE a linear representation in terms of the coordin&tesboth
schemese has only a cell-averaged representation, which is computed at the end of ste
using

e=E —Vv?/2. (3)

This potentially problematic equation is the weak link of hydrodynamic schemes writt
in terms of the total matter energy since there is no assurance that Eq. (3)e/iel@s
Negative energies may arise in test problems such as the one posed by Noh [10] in a re
where the fluid is cold and moving, i.€€, 2~ v2/2. In such problems, as a shock passes, i
the shock jumps are only slightly in error, the code may compute an erroneous, negati
Presently, we avoid such cases by always initializing with small and positive temperatul

In the following, we use subscripisandc to denote point- and cell-centered variables,
respectively, and superscripts to denote values obtained at the end of the various s
Thus,Ti(O) is the node-centered temperature at the start of the time cycle. Step 2 begin:
computing two cell-centered temperatures and a specific heat,

o= (fovsan®)/ fo. g

TP =T (o p”. 19), (5)
de(p®, p®, £
and Cv — ( c 81:: c ) , (6)
P

where we explicitly note the EOS dependence on the mass fractiovisch are also ad-

vanced by the hydrodynamic scheme. Unless noted otheryigecell centered and con-

stant over the cell. Calculation of properties of material mixtures is described in Section :
Equations (4) and (5) define two temperatures whose difference

AT =T® — TO
defines an energy change on the points
Ae? / dV 61 () (PG AT?.

The specific heat, leads to a point heat capacity

Cui= /Q dV ¢i(x) (pCy)e,
which determines the nodal temperatﬂ'[@, the starting point for steps 3-5,

T2 =T+ ag?/Cy. 7)
Since Eg. (7) may generate unphysical extrem‘é?, is min—maxed,

T,® = max [Tioor, Ti.mins MiN (T max, )],

4The hydrodynamic variables are discontinuous across the cell faces.
5Since onlyT is min—maxed, energy is conserved.
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whereT; min andT; maxare formed fromTi(O) and theTC(D of the surrounding cells, anGiyor
is a user-specified lower bound which depends on the problem. Aff lis calculated,

step 2 computes other material properties.

OnceT;@ is known, steps 3-5 are straightforward. Step 3 supplies a (positive) ene
source& which is diffused by step 4 yielding the intermediate temperafiife (There
is no need foIT,®.) Step 5 advance§® by coupling it to the transport equation f&
which yields the final temperatufg®.

The time cycle concludes with step 6 which transfers the nodal temperature change

AT® = TO _T@, ®)

to the cells. In order to simplify the discussion, we first describe the procedure usec
couple to the first-order hydrodynamic scheme or when running problems in which
hydrodynamic module is not used. The cell-centered analogue of Eq. (8),

ATO = (/de@ATﬁ@)//dv,

defines the final internal and matter energies,

e® = e 1 ¢, AT,

9
(PB)® = (pE)Y + pc, AT ©

The energye®, densityp, and the EOS define the final pressure,

p® = p(pc. €, fc).

Equation (9) has no assurance of keepifyy positive. If this ever happens, the code
prints a warning message, resets the energies to floor values, and continues. We have r
experienced such a failure and do not expect this to happen for the following reasons. F
step 4 diffused’, hence only points with relatively largg decay while those with small
values are increased. Thus, only relatively hot cells lose energy. In skdp &oupled tcE, ,
and in Section 3.2 we prove that the coupling scheme limits the decre@sbleertheless,
if Eq. (9) yieldede, < 0, resetting it to a floor value leads to an anomalous energy ga
which is monitored by the energy accounting functions called at the end of the run.

When coupling to the second-order ALE hydrodynamic scheme [2], we note thal
advances the total energy moments

[avaoee. (10)

C

Hence, in addition to updatire, (0 E)¢, andp., we add the energy changes to the moment
as follows. For each cell, we first obtain the cell-to-point centered energy demsiﬁeé?

by noting that

PEYVO) =D ¢i(x) (WE)g].
]
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Multiplying this by a basis function and integrating yields a linear system for the ener
density,

/dex) PE)Y ) =D MBS, My =/dV¢i<x)¢j<x). (11)
C J Cc

The solution of these systems is fast since it only involves matrices of order equal to
number of vertices of the cell, e.g., 4 in a tetrahedron. Qppd®)_; is known, the final
values are given by

PBEE = BN + pecu (T = T,2). (12)

Multiplying by the mass matrix elemenkd; ; gives the energy moments.
Once the total energy is known, the cell-to-point centered presgdreare obtained by
expanding the equation

ep, p, f) = (pE)/p — v?/2

about the central values which yields an equatiorpiqrin terms ofpe, p¢, oc.i, €tc. Lastly,
if any pc; or any result of Egs. (9) or (12) yields anomalously low values, all the poir
values(pE)¢; andpc; within the cell are reset to the cell-averaged valyes). and pe,
respectively, analogous to the Van Leer limiting procedure described in [2].

To summarize, the linchpins are the node-centered and contiffiuang the cell-centered
e. We couple by mapping changes from one to the other. We conclude this section
presenting results on a problem which stresses the coupling algorithm. The test simul
a point explosion. Gas motion is governed by the hydrodynamic equations supplemer
with a diffusive flux of internal energy.

2.1. Point Explosion with Heat Conduction
Consider an ideal gas with constant specific ligate.,
p=( —Dpe=(y —Dc,pT.
Assume that the heat flux
H=—xop*TVT
whereyyo, a, andb are constants. The initial density satisfies
pli=o = dor “,

wheregy andx are constants. We simulate a point explosion by concentrating the initi
energy—all internal—at the center,

(PE)t=0 = (p€)t—0 = &b (r).

Outside of the central region the gas is cold, ipp= T = 0.

Reinicke and Meyer-ter-Vehn (RMV), who analyzed this problem in terms of similarit
variables [11], showed thatif = (1 — 6b)/(2b — 2a + 1), then the solution is self-similar
and the coupled system of PDEs can be reduced to a system of ODEs. The solutic
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characterized by a distinct shock and a distinct heat front. Depending on the magnitud
a certain nondimensional parameter, the shock either precedes or follows the heat fror
this section, to validate our point-to-cell coupling scheme, we first present a converge
study of 1D spherical runs and compare our numerical results to integrations of the Rl
system of ODEs performed by Bolstad [12]. We then demonstrate that a 3D Carte:s
simulation gives similar results. For this problem, given a fixed resolution, the best restL
e.g., sharp shocks, are obtained running in pure Lagrangian mode. However, we pre
results run in ALE mode in order to demonstrate the robustness of the coupling algoritl
We use the same parameter settings introduced by RMYV, i.e.,

y=5/4 c=1/(y—-1, a=-2 b=13/2, go=xo0=1

and concentrate on a “largg” case in which the heat front radiug ~ 2rg, wherer is the
shock radius. Hence, we set

&0 = 2350.

Figure 1 displays results obtained from a 1D spherical simulation using 400 (initia
uniform) cells to discretize the domain<Or < 1. The ALE scheme moves the grid points
at half the Lagrangian speed. We normalize results to “exact” ODE integrations [12]. (T
normalizations in Fig. 1 are slightly erroneous—see Table Il for corrections.) The figL
shows that the centrdl and postshock velocity agree nicely with the exact values while
max(p) is approximately 7% low.

Before quantifying the errors, we note that for this problem it is difficult to measure the
Since the variables are discontinuous at either the shock or the heat front, a fejative

EO0 =235, time = 0.051457, 400 cells

1.0 I B BT A | T T T T L_.

- 7 A: density/46.071 -

- B: temperature/4.1779
0.8— C: velocity/5.3928
0.6— —
0.4— -
0.2— _
0.0 | | | |

0.0 0.2 04 0.6 0.8 1.0

FIG. 1. Self-similar point explosion problem; 1D spherical simulation.
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TABLE Il
Self-Similar Point Explosion Problem,&, = 2350

N@ /Oerrb Uerrb Ten® rsd rn® Tizo

50 22.01 4.88 —-1.607 0.417 0.920 4.2417
100 14.91 2.94 —0.345 0.435 0.920 4.1890
200 10.15 1.88 0.002 0.443 0.915 41747
400 6.63 1.17 0.053 0.447 0.915 4.1724

a Denotes number of cells.

B for = 100 x (1 — feoge/ Fexac); COMpAre at = r; pPeyact = 45.774,Ueyaer = 5.3925.
¢ Same ad, except compare at= 0; Texaer = 4.1746.

4 Position of maxp).

¢ Largest radius witil > 1.

L, error measure is inappropriate; numerical fronts are diffused over 1-3 mesh widths
their position varies a®(h). Furthermorep is especially difficult to approximate near
its maximum since it is nearly needle-likerat= rs. Indeed, the ODE integrations show
that att = 0.05145,dp/dr ~ 1014 behind the shock [12]. Thus, even if we only compare
maxima, we expect fairly large errors for n{@gy. On the other hand, in regions where the
solution is well behaved, e.dl,(r = 0), the errors should be considerably smaller.

There are additional difficulties. First, although we specify a stop time 0.05145,
the simulations continue until the first cycle for which the running time excted$us,
simulations with different mesh sizes do not halt at the same time. Secondly, it is difficult
ensure that our simulations (in whiélg = 235) match RMV’s or Bolstad’s since there is
no explicit relationship between the RMV nondimensional parangigtand&,—see [11]
and [13]. Thirdly, we will examine convergence of ngaxu, T) and the positions; andry,.

For the analytical solution, the shock locatigreoincides with the location of max, u),
and the heat fronty, is at the outermost radius whefe> 0. However, since numerical
fronts are diffused, defining their position is subjective. In the following, we defirees
the location of magp) andry, as the outermost radius whefe> 1. (The “cold” region is
initialized with a positive but small'.) Furthermore, the locations of mg® and maxu)
either colocate or are in adjoining cells. The main point is to have consistent definitic
and realize thats andr,, may lag behind the correct values by 1-2 cell widths.

Results are summarized in Table Il in which we display relative % errors irmax T)
and positions of the shoek and heat}, fronts. As expected] has the smallest errors. The
values in the last column display second-order convergence, albeit to 4.171 instead ¢
4.1746, the result from the ODE integrations. In any case, 200 cells are sufficient to ob
an accuracy better than 0.1% fbr For p andu, the errors are larger, but as stated above
these variables are sharply peaked and furthermore, since the numerical values are
cell averages, they are necessarily smaller. The freraad heat, also converge. By any
measure, our simulations not only converge, they agree nicely with the ODE integratio

We next demonstrate the code’s performance on a 3D simulation of the same probl
We discretize the unitcub® < X, Y, Z < 1) into 104 initially uniform cells per dimension
(over 1.1 million cellsf The point explosion is simulated by loading 235/8 units of energ
into the corner cell next to the origin. All other cells are initialized with a small pressur

5 We use 104 since it is divisible by 8, thereby allowing us to run in parallel on 128 processors by subdividl
the domain into blocks of size 18 26 x 26.
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A: 1D spherical

|
P _: B: 3D x-axis :_
_ C: 3D y=x, z=0 -
30— D: 3D x=y=z .
20— —
10— —

FIG.2. Self-similar point explosion problem. Density vs. spherical radius. Curve Ais a 1D, 100-cell spheric
result. Curves B-D are lineouts of the 3D, @&l Cartesian simulation.

We use Gaussian quadrature to compute the proper cell-averaged initial density. Symn
is imposed at theX = 0,Y = 0, andZ = 0 planes. The simulation is done in ALE mode;
grid points move at 3/10 of the Lagrangian speed.

Our 3D results are summarized in Figs. 2 and 3 in which we display lineoytswofi T
at the final timet = 0.05146. For comparison, the figures also contain results from a 1l
spherical coordinate run using 100 cells. The 3D lineouts are taken along three diffel
directions in order to show near-sphericity of the waves. Figure 2, which disp)aysows
that although the 3D Cartesian run does not attain the same spherical maxima, the s
locations are nearly coincident. Figure 3, which displ@yds less satisfactory. The 3D
central values are somewhat higher than the 1D run and the heat front propagates sli
further along the lineZ = 0, Y = X and the lineX =Y = Z, i.e., diagonally across the
mesh. However, along th¥-axis, T is nearly identical to the 1D run; both fronts are at
r ~ 0.92. At first blush, sincl « e and pe is the internal energy density, and since the
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0 02 04 0.6 0.8 1.0
R

FIG. 3. Self-similar point explosion problem. Temperature vs. spherical radius. Curve A is a 1D, 100-c
spherical result. Curves B-D are lineouts of the 3D 1€l Cartesian simulation.

3D temperature is generally larger than the 1D result, one might opine nonconservatio
energy. This is false, since the code conserves total energy. In fact, at the end of the rur
observe that energy is conserved to 10 decimal places! It then appears that a good me
of error would be to compute the ratio of the internal to total energy. Unfortunately, at t
time of this writing, we do not know the “analytic” value. For the record, in our 3D run, &

. ([ reav) /([ reav) =orass

To summarize, considering the extreme nonlinearity of the problem, our simulatic
generally agree with the independent ODE integrations.

3. PHYSICS PACKAGES

Some of the algorithms for the packages listed in Section 2 have been presented p
ously. Reference [2] describes the hydrodynamic scheme. The heat conduction module
the laser package are discussed in [1] and [14], respectively. Control of arun, i.e., initiali
tion and what makes its execution transparent for uniprocessors as well as massively pa
systems is delineated in [15]. A discussion of the parallelization of the modules is founc
[16] while a parallelization scaling study appears in [17]. In this section, we describe t
packages that have not been discussed elsewhere. We first consider the calculation o
terial properties. Then we describe and analyze the frequency-averaged radiation diffu
package. As a run progresses, the code tallies the conserved quantities: mass, mome
and energy. Section 3.3 describes the tally for diffusion equations with Dirichlet boundz
conditions.
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3.1. Material Coefficients

We now describe how to compute the material coefficients needed by the other phy
packages. The starting point is the equation of state (EOS) for mixed materials which, w
given values of two thermodynamic variables, returns the other two, typie@llyT) and
p(p, T). Recalling the steps described in Section 2, after the hydrodynamic step, for e
cell we computel Y using Eq. (5), other material properties sucltassing Eq. (6), and
the Planck and Rosseland mean opacitieandxrg.

Our EOS module allows mixtures. The third argumérin Egs. (5) and (6) is a vector of
mass fractions whose individual componefits= m; /m, wherem; andm are respectively
the mass of materidl and the total mass in the cell. If a cell is composed of only on
material, the EOS call (done cell by cell) branches to the appropriate table for that mate
If the cell contains a mixture, we assume that the sum of the individual volumes equals
cell volume, i.e.y”; Vi = V. If this equation is divided by the masses we obtain

Z fi/on = 1/p,

wherep; is the individual material density. We also require that all the materials withi
a cell be at a common pressure and temperaf(ite This assumption, while not hydro-
dynamically correct, is justified by step 4. (In ICF the high thermal diffusion coefficien
homogenize the temperature discrepancies within a cell.) Onggdéine computed, average
material properties such asc,, kp, andxg are given by equations of the type

g= Z figi, (13)

whereg = &, Cyj, kp,i, O kR;.’

For the laser deposition and heat conduction packages, we need the average charge
Z*, the free electron density,, and the Coulomb logarithm IA. These quantities are
computed using the Thomas—Fermi average atom model [18] in which the material wit
the cell is said to consist of atoms whose averages are also obtained by Eq. (13) where
g =1/A,Z/A, ZiZ/Ai andZz; In Z; / A define the average atomic numkiferchargez,
etc.

We computeZ*, In A, and the thermal (diffusion) coefficiel, using formulae from
More [21] with modifications suggested by Zimmerman [22]. The average clZarged
A are used to compute the ion and free electron densities

n = ,oA/[K(l + Z*mgj)] andne = Z*n;,

whereA is Avogadro’s number anahe; is the ratio of the electron and proton masses.

To conclude this section, we present plotszgfand the thermal conductivitipe, and
just like Lee and More [23] (Fig. 4, p. 1278) we examine aluminum. Figure 4 displa
D¢/ T2 as a function ofT for variousp. (We plot the ratioDe/ T2 in order to remove
the analytic dependence on the temperature power.) In Fig. 5, we digply the same
density and temperature range.

”In the absence of spectral information about the individual opacities, Eq. (13) is also used to cogpute
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FIG. 4. Aluminum D,/ T%2 vs. T for variousp. Units: D, in erg/(cm s keV)T in keV.

In order to avoid superthermal electrons, we lii so that the fluYD.VT| does not
exceed

Femax = NeKT+/8KT/(rme),

whereme is the electron mass.

3.2. Radiation Transport

Ignoring effects such as the convection of radiation, radiation pressure, Compton s
tering, etc., the relevant equations are

&E =V .-D/VE, + Cpr[B(T) - Er]

(14)
PGy T = —Cokp[B(T) — E].

InEgs. (14)E; isthe energy density of the radiation field; is defined using the Rosseland
mean free path,

Dy =clr/3; (15)
kp is the Planck averaged opacity; and the frequency averaged source function

B(T) = (4o/0)T* = /Oodv B,(T),
0

whereo = 27°k*/15h3c? is the Stefan—Boltzmann constant, @dT) is the Planck func-
tion.
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Equations (14) are solved using a simplification of the partial temperature scheme
scribed in [5]. IfE? and T® denote the variables to be time advanBeuk first linearize
BI

B(T) = B+ BY(T - T9), (16)

where

B®=B(T% and B® = (dB/dT)|t_to.
Using backward Euler temporal differencing, givifig, T, and B a point centered, FE
representation; then multiplying the second of Egs. (14) by a test fungtjontegrating;
and lumping the integrals, the temperature change at the points is

T -T°=Ki(E, - BY) /(G +KBY), (17)
where

¢ = / dV i (pc)e and K; = cAt / dV ¢ (picp)e, (18)
Q Q

where the subscrift denotes variables which are constant over the cell (zone) and whe
the subscript denotes the value at thxe vertex.

8 According to the definitions of Section Z? is Ti“", the point-centered temperature after heat conduction.



96 SHESTAKOQOV, MILOVICH, AND PRASAD

If EqQ. (17) is substituted into Eq. (16) and the result substituted into the first of Egs. (1
we obtain the scalar equation &y ;,

Vi (Er, —Eﬁi)=—ZDij Erj+Li(BY—E), (19)
i

where

D :AT/ dV Ve - D/ Ve, Vi :/qubi, and £ =GKi/(CG+KiBY).

Q Q (20)
Equation (19) is a FE discretization of a diffusion equation with an explicit soBfcand
a coupling coefficient;. To summarize, the scheme consists of computingsolving
Eq. (19) forE;, and computind; using Eq. (17).

To prove stability, note that sinc& and B? are positive, it follows that if the grid is
sufficiently fine, Eq. (19) leads to a linear system with an M-matrix. HencERiifz 0,
thenE;; > 0. Using the definitions foB? and B?, Eq. (17) may be used to show that
if E;j >0 andTi0 > 0, thenT; > 0. Thus, the scheme yields nonnegatieand T. To
derive an upper bound fdr, note that Eq. (17) may be manipulated to yield

T <T°+E,Ki/(C+KiBY). (21)

Thus,T; is bounded by a linear combination §f andE; ;. The latter is itself bounded by
max (E;.;) which may be estimated using the maximum principle for elliptic equations.
We now analyze the scheme for the two limits, lafsieand largeC;. In the former, the
left side of Eq. (19) vanishes arif]; satisfies a nonhomogeneous Poisson equation whic

imposes the usual bounds &nand the manipulations leading to Eq. (21) yield

Jim T = (3B° + Eri) /B (22)
For the analysis of largk; , if the diffusive term in Egs. (14) is ignored, the scheme reduce
to backward Euler differencing of two coupled ODEs, a method known to be stable.
terms of the matter and radiation energies, the result is

lim E; = «E% + (1 —a)B,
K—> 00 ’

lim T = BGTY + (1 — VI EY),
K—> 00 B

where O< o = Vi /(V; + £i) < 1,and O< B8 < 1. Itis also easy to show that the scheme
is conservative, i.e., whatever energy leaves one field goes to the other.

Our scheme has the drawback that in the limit of latge E # B(T) and the solution
depends on the previous state. To see this, note that as oo, Eq. (19) shows thaE,
depends on the old sour®?. Also, from Eq. (22) we obtaie ~ [4(T/T° — 3]BO. (Itis
trivial to show thatT/T? > 3/4 which also shows the maximum drop tifamay incur.)
EnsuringE ~ B(T) for large At could be addressed by introducing nonlinear Newtor
iterations at each time step, but this would need to be the subject of another paper.

The fact that whemt is large the new state depends on the old leads to erroneo
answers in some problems. Specifically, the new temperaiuan be unphysically large.



COMBINING CELL- AND POINT-CENTERED METHODS 97

If At is large, the worst error arises if the denominator of Eq. (17) is replacéd B,
which is valid whenever

C < K;iBC. (23)

To analyze Eq. (23), we note thatefis the matter specific energy, then~ e/T and
B’ ~ B/T. Hence, Eq. (23) implies

p€%/T® « cAtprpa(T%?/TC, (24)

where the radiation constaat= 1.37 - 10 erg/cc ke\t. For a monatomic gag,=c¢, T,
wherec, ~ 10'° erg/g keV. Thus, Eq. (23) implies

1.820/(T9? < (cAt)(pp). (25)

This condition is obviously problem dependent. The right side is the ratio of the distar
radiation travels during the time cydleAt) to the mean free pathy/Lo«p). This ratio may
indeed be large, especially if we recall that approximating radiation transport by diffusi
is valid only for short mean free paths. In any case, assuming Eq. (23) holds, Eq. (17)
the form

T =T°+ (Ei — BY)/BC.
It follows that if T.? is negligibly small, Eq. (22) becomes

Jim T = E;i/4a(T°)’, asT®—o.

This is unphysical if the problem involves radiation flow into cold matter since for sme
enoughT?, the new emission termT* may be greater thak. Hence, at that point, the
matter is cooled rather than heated. However, we stress that th& fimit 0 is incompatible
with Eqg. (25). Hence, the above error should rarely occur for real problems. Neverthele
it can arise for problems such as the one described in Section 3.2.1 in gylatdo has a
T3 dependence. In that case, the left side of Eq. (25) depends oply on

Before concluding this section, we note that since diffusion is characterized by infin
propagation speeds, a flux-limiter is required. To this end, the coeffi€ied modified
so as to keep the speed of propagation of the radiation energy flux comparabl@uo
modification replaceég (see Eq. (15)) with

Cr = Lr/IL+ 2LR/(VEI/IED]. (26)

Equation (26) refers to cell-centered variables, i.e.,

IVE |2 = (/dV|VEr|2>//dV,
C Cc

where the gradient is computed using the finite element representati§nmothe cell,

Er(x)=>_ ¢i(0En,
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and the cell averaggs, | = E; ¢ is obtained by applying Eqg. (4) t&;. The flux-limiter is
effective in regions of largér and in such cases the flux becomes

H 0 0
Jim —DrVE: = —(c/2)(|E|/|VE?|) VE:,
where the superscript denotes a temporally explicit correction. In the limit of gxbalie
flux reduces teE; /2.
In the following sections, we consider two problems which test the radiation modu
The first stresses the coupling betwdgnandT ; the second tests the flux-limiter.

3.2.1. Pomraning problem.We consider a problem proposed by Pomraning [24], ir
which an initially cold half space of materiéd < Z) is irradiated on one side. For this
problem, in Egs. (14) and (15), we fix

p=k=ICr=1
and letc, have the dependence
cv =GoT3 ¢y o= const (27)

This problem is a stringent test of the scheme since we linearize Bathd the matter
energy change by writinge = ¢, (T?)AT.
The problem has two parametetsand Finc. The first is defined by the ratio

€ = 160/C G, 0.
In the simulation, we use
e =0.1
The second paramet€,c is used in the boundary condition imposedZat 0,
(c/2E; — DyozE; = 2Fc. (28)

If we define Ejnc = 4Fin¢/C and setEj,. = 1, then Eq. (28) is of the form described in
Eqg. (32) wherea = b = c¢/2.

We present results in Fig. 6 in which we plgt andB(T) as functions ofZ for various
values of the normalized time

T = eCkpt.

The results show how the terni& and B(T) equilibrate. Atz = 0.001, the two fields

differ significantly; atZ = 0.01, E; > 1000B. However, byr = 10.0, E; ~ B(T). These

results are in agreement with those published by Su and Olson [25] (p. 350, Fig. 3).
The simulation uses 100 cells with equal ratio grid spacing. The first cell (at0)

is of width A = 0.01 and the successive widths increase by 5%. Thus, the computatio

domain is 0< Z < 26.10 and for the last celh = 1.252. The simulation takes 334 time

cycles to reach = 10.38. As the run progressesr increases. InitiallyAr = 3.0- 107,

at the end, At = 0.657. The code increases the time step by 10% if the fields, whe

they are above certain base values, do not change appreciably. In this problem, we

Er,base= B(T)r,basez 107°.
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FIG. 6. Pomraning promblenE, (solid lines) andB(T ) (dashed lines) v« for variousr.

To further demonstrate the accuracy of the scheme, in Table Il we display the percen
of relative errors from our results compared to the tabulated values of [25] (p. 346, Table
and 2). Table Ill shows that our result compares very well except WB€F¢ has relatively
low energy.

In order to demonstrate that the scheme does not introduce any anomalous diffusio
we mix cell- and node-centered methods, in Table IV we compar806Ly values to those
of [25] (p. 346, Table 2) at the leading edge of the front which we define as the positi
whereB(T) exceeds 10*. In Table IV, we evaluat®(T) by interpolating the result at the
mesh points enclosing the desired value of the coordirates/3«xZ used in [25]. The

TABLE 11l
Pomraning Problem?

T €0 €no €1 €m1
0.001 0.13 — — —
0.01 0.21 23.43 20.0 —
0.1 0.20 6.98 0.64 21.18
1.0 0.12 1.10 0.20 0.28

10.0 0.16 0.16 0.40 0.42

2 Percentage errors 100(f/f. — 1) where f and f. are our computed
results and the exact results (from [25]), respectively. and e, are the
errors in the radiation and matter energies at positiea +/3«Z. Thus, for
v = 0.001, atZ = 0, ourE, differs by only 0.13% from the tabulated results of
Su and Olson. Because of the accuracy cited in [25], comparison is made only
at positions where the function value exceeds*10
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TABLE IV
Pomraning Problen?

T X By B
0.01 0.5 1.2 1.6
0.1 2.5 3.5 3.9
1.0 7.5 2.8 3.0

10.0 15.0 9.8 12.1

a Comparion ofB(T) at positionx = +/3« Z, at the leading
edge of the wave (see texBs, and B are values of exact (from
[25]) and computed results multiplied by“ @espectively.

Table Il results belie the accuracy attained, since upon closer examination we note tha
value whereB ~ 104 is within a mesh width of the position given in [25]. We also note
that the results in [25] are guaranteed to be correct to an accuracy of orfly 10

Before ending this section, we return to the discussion in Section 3.2 regarding
possibility of obtaining anomalously high temperatures when radiation propagates i
cold material ifAt is large. Since here, o T2, Eq. (24) reduces ta, o <« CAtkp, and it
is easily checked that the parameters for this problem satisfy the inequality. To illustr
the difficulty, if t is normalized byt, for the Pomraning problem Egs. (14) become

&E =V .DVE+ (1/6)[B(T) — E] (29)
dre=—(1/e)[B(T) — E],

whereD = 1/(3¢), e = B/e¢, andB = aT%. In deriving Egs. (29), we useth = p = 1.
Hencege = peis now the internal energy density. The normalized time eckpt.

In the Pomraning problem, which simulates radiation propagating into cold materi
B < E. Since Egs. (29) imply that is an approximate time for the fields to equilibrate,
it is interesting to examine what happens at very early times using the backward Eu
semiimplicit scheme described in Section 3.2. Table V displays the exchange {(&m-
Ej) at the first few mesh points. A nonuniform mesh is uséd; = 0.01, and fori > 0,
Az = Azy(1.05). The table shows that fako = 1078, at the incident edgeB, > Eo,
violating physical expectations. For larget, the result is worse, e.g.,£79 = 10°%, then
after one cycle-(By — Eg) = —1.2 - 10'°. However, we note that the difficulty arises only
if the initial time step is too large. The results in this section fsg ~ 10710, but At is
allowed to increase over the course of the run. Eventualty,grows by over 10 orders
of magnitude.

TABLE V
Pomraning Problen?

ATy T i=0 i=1 i=2 i=3 i=4
1.e-8 1l.e-8 —1.5e-1 3.2e-8 9.6e-13 2.6e-16 6.2e-20
1.e-9 1.14e-8 1.1e-5 2.4e-9 3.4e-13 3.6e-17 3.1le21
1l.e-10 1.09e-8 1.1e-5 2.0e-9 2.4e-13 2.1e-17 1.4e-21

2 Energy exchange tergE; — B;). First and second columns denote initial time step
and current time, respectively.
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time = 1.69156e-11 sec.
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FIG. 7. Flux-limited diffusion;T* vs.Ralong (A)Y = 0 plane, (B)X = 0 plane, and (CX = Y planes.

3.2.2. Flux-Limiter. In order to show the effectiveness of the limiter, we sgt= 0
and¢r = 10000 and solve Egs. (14) in the domain0X, Y < 1. We define the radiation
temperaturd, using the relationship

E: = (4o/C) T

We initialize with T, = 10-6 everywhere, and at the origin filx = 1.0. Symmetry condi-
tions are imposed along = 0 andY = 0. Along X = 1 andY = 1, we imposé&c/2)E, +
D, 0 E; /on = 0 which allows radiation to stream out of the problem.

We run the simulation untit; ~ 0.5/c = 1.67- 10711 s. At this time, E, should not
extend beyondR = +/X2 + Y2 = 0.5. In the absence of flux-limiting, mifi,*) = 0.99
over the entire domain, i.e., the cavity fills with radiation. However, when the flux-limite
is on, we obtain the results shown in Fig. 7 which disp@§slong three planes. Although
the limiter does not stop all radiation from moving faster tbaat R = 0.5 the amount of
radiation filling the cavity beyon® = 0.5 is only 103%.

If in Eqg. (26) the number 2 is replaced by another numder 1, the effect for small
At reduces the flux ta E; /a and the consequence of this change is evident in Fig. 7 frol
the result alR = 0.5 x (a/2). For example, ifa = 1, Fig. 7 shows thaE, = 8 x 1072 at
R =0.25.

The limiter is insensitive to grid distortions. In Fig. 8 we overlay contour§, bbn top
of a mesh constructed by giving random displacements to uniformly spaced points. N
how well circular symmetry is maintained.

3.3. Boundary Flux Accumulation

Inthis section we describe the procedure that accumulates fluxes at the problem boun
Consider the diffusion equation

gotu=—V - F, (30)
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time = 1.69156e-11 sec.
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FIG. 8. Flux-limited diffusion. Contours of * for levels (A) 0.1, (B) 0.01,.. (H) 10°%.

whereF = —DWVu. In our applications, such equations have units of (energy density)/tim
In the heat conduction equatian= pc, andu = T, while for radiationg = 1 andu = E;.
In the following discussion we assurge= 1.

Equation (30) is in conservation form. Integrating over all space and time and defini
the energy

U () =/dV ucx, t)
Q

yields

t
U(t):U(O)—/dr% dAF - A, (31)
0 0

wherefi is the outward normal. Boundary conditions for Eq. (30) are either of Dirichlet ¢
mixed type. In the former, on some portion of the bound&®yu = ug whereuq is known.
In the latter type, the boundary condition is of the form

au—F-fA=h, (32)

wherea, b > 0.

In the FE discretization of Eqg. (30) a mixed boundary condition poses little difficult
since the boundary integral arises naturally. Equation (32) is implemented by discretiz
over the faces that constitud€2. The discretization reduces to computing

j{ dA(au— b)
Q2

over each boundary face. Hence, it is easy to determine the amount of energy that fl
througho Q2.
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Calculation of the boundary flux due to Dirichlet conditions is not as straightforward al
is done as follows. First, since Dirichlet conditions are imposed on points, it is conveni
to define the collection of all mesh points as

X=X UAy,
where, ifx is a mesh point,
X1 = {X:ux)isunknowrj and Xy = {X:u(X)=ug(X)}.
Thus, we express as a sum of where it is unknown and where it has Dirichlet data,

u) = Y ¢i0u + > ¢a(X)Ug.

X EXl XdE/Yd

For the FE discretization of Eqg. (30), the temporal derivative is discretize@ as
u%)/At, and the equation is multiplied byt ¢; and integrated ove®. After lumping the
lower order term, this yields

(/ﬁ}qubi)(ui —u?) =—At/ﬂdv¢iV~F, (33)

whereg; is centered on some € A;.
Without loss of generality, we assume that if there is a mixed boundary condition, it
homogeneous, i.ea,= b = 0 in Eq. (32). Then, after integrating by parts we obtain

/dv¢>iv.F= Z/dv DV¢i - Vo; uj, (34)
Q2 XjEX v

and we stress that € X7 andx; € &, i.e., we solve equations only on mesh poitg X.

If Eq. (34) is substituted into Eq. (33) and the result summed over all.X;, we obtain
a discretized version of the energy change over a time step. However, the result looks
natural if we add the null quantity

3 {/de¢d[(ud—ug)+(ug—ud)]}.

Xd€Xy

If we now define the discrete analogue of the total energy

and letU° represent the energy at the previous time level, we obtain the energy change

U-0°= )" /dv¢d(ud—u3)+fd, (35)
Xg€Xy Q@
where
Fo=-at}" 3 [ avove-veu, (36)
X €Xy XjeX Q2

is the energy that enters across that portiofe@fvhere we are given Dirichlet data.
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The energy change is composed of two terms. The first term on the right side of Eq. (
represents the temporal change of the Dirichlet data. The secondAgmmanishes ev-
erywhere except on cells which have a poigte Xy. Hence, if we defin€2 = Q; U Qq
where

Q, = {cells : all its vertices € X1}

and Q4 = {cells : with at least one vertexy € Xy},

thenF4 reduces to integrating only over the cell€lg and is computed after the solution is
known since it involves values afon unknown points. The computation8§ requires sav-
ing (or recomputing) the contribution to the matrix elements that stemmed from discretizi
the diffusion operator over the ceksQyq.

Finally, if the location of Dirichlet data changes from one time level to another, Eqg. (3
still holds if the setsty and€24 define the points and related cells over the current time cycls

4. ICF CAPSULE IMPLOSION

To demonstrate the efficiency and robustness of the coupling scheme, we consid
problem of interest in ICF and simulate the implosion of a NIF capsule which consists
a nearly vacuous inner region enclosed by two spherical shells. The capsule dimensi
materials, and initial densities are given in Table VI. The material EOSs are given by
LANL SESAME tables [26]. Since the tables do not have data at low temperatures,
initialize with T = 0.007 keV.

The simulation uses the hydrodynamic, heat conduction, and radiation transport pack:
and is run in the Lagrangian mode. Since the code convects the mass fractions [2], tl
is some “mixing” of materials across the original Be-D interface (limited to 2—3 cells
Material properties, e.gxp, of cells with pure Be or pure D are calculated by EOS
function calls. For the mixed cells, we use the technique described in Section 3.1. In
heat conduction module, the conductivity is given by the Lee & More formulae [21, 2
with modifications suggested by G. Zimmerman [22].

As boundary conditions, for the hydrodynamics, we get 58.22 GPa on the surface
of the capsule which corresponds to the pressure of Be=atl.85 andT = 0.001 keV.
For the heat conduction package, a symmetry condition is imposed, and for the radia
we use Eq. (32) wher@ = c/2,u = E;, F is the radiative fluxb = cEs/2, andEs is set in
accordance with a radiation temperattire= 0.16 keV. The boundary conditions simulate
a capsule inside a hohlraum kept at constnt

TABLE VI
NIF Capsuleé?
Dimensions Material Density
r<rg=01 Deuterium 10?
rg <r <ry=011 Deuterium 0.21
ri <r <rpa=0.121 Beryllium 1.85

a Lengths in cm, density in g cm.
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FIG.9. 3D domain of ICF capsule implosion problem. Shading designates processor numbers. Grid con:
of 5,104 tetrahedra, 1,246 points, and 10,915 faces; radial discretization uses 10 cells in the gas, 12 cells f
fuel, and 11 for the ablator.

The computational domain consists of an icosahedral wedge discretized by an unst
tured tetrahedral grid generated by the LaGriT code [27] and is decomposed into
subdomains using METIS [28]. The initial mesh is displayed in Fig. 9.

The simulation consists of a typical (albeit not well tuned) “indirectly driven” implosion
Energy is deposited on the outer surface of the Be ablator surface which heats up, exp:
and creates an imploding shock. The shock traverses first the ablator, then the fuel (w
initially ppeuterium= 0.21), and later the gas. At both interfaces=r; andr =rg, the
shock travels from a high-density region to one of lower density, a scenario for a poss
Richtmyer—Meshkov instability. In the ablator, the radiation source is delivered to a thinni
moving spherical surface, a condition ripe for Rayleigh—Taylor instabilities as the tenuc
hot outer region pushes on the denser shocked ablator. In Figs. 10, 11, and 12 we pr
side-on views op, T, and the radiation temperatufeatt = 8- 10-° s when the imploding
shock has reflected off the origin. Only the central region is displayed.

The figures are characteristic of a capsule implosion. The thin, imploding shell is evid
in Fig. 10 which highlights the high-density region. Figure 11 showsThat0.716 keV
near the origin. Outside the central region, out to the ablation fibrig, relatively cold.
Beyond the ablation fronflT ~ 0.158 keV due to its coupling td,. In Fig. 12 we see
the ablation front, outside of which = 0.158 keV. Inside the fronfT; is relatively cold,
approximately 0.018 to 0.03 keV, while in the central regiprr 0.075 keV due to its
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- 2.73
2.34
1.95
1.56
1.17

0.784

0.394

0.00503

FIG. 10. ICF capsule implosion; side-on view of densitys= 8- 107° s.

coupling toT . All three figures clearly display the near spherical symmetry of the implosiol
Figure 13 displays lineouts of the results along Zhaxis.

In order to demonstrate that the simulation is qualitatively converged, we make an ac
tional simulation while running the code in “1D” spherical mode, i.e., using only one cell|
the azimuthal and polar directions. The 1D run uses slightly finer zoning; Fig. 14 disple

Cells
Te

0.715
I[:O.646
=0.576
=0.506
0.436
0.367
0.297
0.227
0.158

0.0879

0.0182

FIG. 11. ICF capsule implosion; side-on view of matter temperattiee;8 - 10°° s.
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- 0.13
-0.116
0.102
0.0881
0.0741
0.0601
0.0461

0.0322

0.0182

FIG. 12. ICF capsule implosion; side-on view of radiation temperattiee;8 - 10°° s.

results at = 8-10°% s. Although there are obvious differences between Fig. 14 and tl
results in Figs. 10-13, the simulations generally agree, especially noting that the me:
are coarse, and that the 3D results are obtained while running in Cartesian coordinate
a tetrahedral grid while the 1D results use spherical coordinates. In Fig. 14, we also s

3D simulation aiong Z axis

Jrvivbvoobiverbvernborebronc b L
0.7— t=8.-9 sec =
= A: tho/10 -
06— B: Te -
- C:Tr -
05— D:-vz'1.e-8 -
- E: 5"ge -
04— E‘
03— -
0.2= =
0.1— -
0.0 RERERERRRRREER E;

|
000 001 002 003 004 005 006 0.07

FIG. 13. ICF capsule implosion. Lineout of 3D simulation along thexis. Curve A isp/10 (g cn13/10),
curves B and C ar& andT,, respectively (keV), curve D isvz/1¢ (cm s¥/1(%), and curve E is the Be mass
fraction divided by 2f =8.0-10°s.
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_I|||t|||||l|1|||rllllulnlulllulll

- t=8.e-9 sec -
06= A: tho/10 -

- B: Te -
0.5— C:Tr —

- D:-vr'1e-8 / -
0‘4_: E: .5"fBe ik :_
03— =
0.2— =
01— =
0.0 thrprnnn e

0.00 001 002 003 004 005 006 0.07

FIG. 14. ICF capsule implosion, 1D run. Curve A4g'10 (g cn3/10), curves B and C afE andT,, respec-
tively (keV), curve D is—vr/10° (cm s1/10°), and curve E is the Be mass fraction divided by 2; 8.0-10° s.

thin, imploding shell (curve A), a high central (curve B), and inside the ablation front at
r ~ 0.06, a relatively coldl, (curve C). The large negative velocity depicted in Curve D
shows that there is still a great deal of imploding kinetic energy. Finally, curve E is the |
mass fraction, initially a step function centered at 0.11 cm.

5. CONCLUSION

We have presented an overview of a 3D, unstructured-grid code written to simul;
ICF experiments. Special attention has been paid to coupling the seemingly incompat
cell-centered hydrodynamic and point-centered diffusion packages. Mixing the two tyy
of centerings avails us of the best methods for the individual modules. The coupling |
proved robust, even on difficult problems such those described in Sections 2 and 4.
3D implosion simulation maintains the expected symmetry of the solution even though
underlying grid has small scale asymmetries.

APPENDIX: ORDERING OF PHYSICS PACKAGES

In this section we discuss why the time cycle evolves the packages in the order descr
in Section 2. Our choice is motivated by a desire to obtain the correct answer in the limiti
case thatthe physics equilibrates at the end of the time cycle. However, before discussing
limit, we note that codes such as ours must simulate at least two processes: compres
hydrodynamics and energy transport. The former is described by the (hyperbolic) Et
equations for the conservation of mass, momentum, and energy. For the latter, there
several possibilities. A detailed treatment requires separate ion and electron tempera
and an additional system governing the flow of radiation energy and its coupling to the ma
(electrons). Typically, ion and electron energy fluxes are modeled by Fick's law—ener
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flows down the respective temperature gradient—which leads to diffusion equations.

radiation, a complete description of an intensity dependent on position, time, frequency,
propagation direction is very expensive. Thus, simplifications are made; the most comr
(and viable for a 3D code) is to assume near isotropy, i.e., ignore directionality. This le:
to diffusive transport. Discretizing the frequency spectrum into a number of groups lead
one equation per group, while averaging over the entire spectrum gives rise to the diffu:
equation for the radiation energy denshy.

To continue the simplification, the ion heat conduction equation is either ignored (sir
its diffusion coefficient is less than the electron’s by a factoy/afi /me [19]) or averaged
with the electron. This leads to the “2T” model with diffusion equationsToand E, .

In some cases, the matter heat conduction is entirely ignored, mattét, saveé assumed
to be tightly coupled, i.e.E, ~ B = aT#, and the energy transport is expressed in term
of a single diffusion equation. The plasma is thus modeled by the Euler equations v
heat conduction—the system considered by Reinicke and Meyer-ter-Vehn [11]. Her
we first motivate how to advance a system consisting of hydrodynamics, heat conduc
(diffusion), and an external energy source such as a laser.

The equilibrium limit is obtained if the processes are ordered so as to do the slow
one first. In our applications, since sound speeds are relatively slow, the hydrodynar
package is called first. After the hydrodynamics, which moves material through the me
we calculate material properties such as the opacities and the specific heat. In a str
Lagrangian code, material properties could be calculated first. However, with an Eulet
or ALE hydrodynamic module, material properties are calculated after the matter has ma
to its new position. Since laser energy deposition depends on the electron number de
Ne, that package follows the calculation of material properties. The laser package car
be placed at the end of the time cycle since such energy deposition is very localized
enormously raises the temperature in a small region. Thus, processes such as heat cond
and radiation come last in the time cycle since they redistribute the energy source.
procedure implies an additional subtlety. Since the equations are nonlinear, one m
propose that each process should be solved either fully nonlinearly or if advanced u:
“lagged” material properties, these properties should be recomputed after each proc
For the laser, this implies recomputing properties such as opacities and specific heats
depositing the laser’s energy. This leads to coefficients (used by subsequent modules
are wildly out of equilibrium. Thus, in a code with only hydrodynamics, a laser, and he
conduction, we advance them in that order. (Properties such as the pressure, since
are needed by the hydrodynamics, are computed at the end of the time cycle.) The |
package comes after the hydrodynamics to avoid anomalous motion due to the local
energy deposition.

We now discuss the ordering of the two diffusion packages: electron heat conduction
(diffusive) radiation transport. Both are flux-limited; the former limits to the thermal spee
(~/KT/me), while the latter to the speed of lightThus, ordering by the maximum speed
of propagation places the radiation last in the time cycle. Another reason for difflising
beforeE, stems from comparing the diffusion coefficients of the set of equations that ¢
advanced after the laser package,

pCT =V -DeVT —K(B-E)+S
*E =V -D;VE +K(B—-E)+ S, (A.1)
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whereB = aT#is the Planck functionC = co« is the electron—radiation coupling coeffi-
cient, and theS are the explicit sources, e.& is the energy deposited by the laser.

In most problems[C is very large. Indeed, the derivation that deletes the radiation
dependence on propagation angle, i.e., that assumes near isotropy, assumes tight col
to the matter. Thatis, to a good approximati&n,~ B. Of course, one approach is to solve
the entire system (A.1) simultaneously. Unfortunately, since we require implicit tempo
differencing, this leads to linear systems of ordét, 2vhereN is the number of points.
Since the most we wish to tackle is systems of ofdewe need to choose which to diffuse
last, T or E;. Heuristically, because of the faster propagation spEedhould be last. The
following argument affirms that choice.

We assign to last place in the time cycle the most equilibrating (mathematically, t
stiffes) process, i.e., the one with the largest diffusion coefficient. Before comparing the
we normalize the coefficients. Since we measure temperature in keV, in (& 8ndD;
have units of erg/(cm s keV) and éfs, respectively. The electron diffusion coefficient is
[19]

k(KT)>%/2 o T92 erg
Pe=¢ i ima =5 1019708 Lamskev) (A-2)

wheret = O(1) and InA is the Coulomb logarithm. The radiation coefficiéht = clr/3
wherefr is the Rosseland-averaged mfp. The assumEior aT* yields a radiation flux
—D;VT where

D, = (4/3)actrT?

anda = 1.37- 10'* (erg/cn? keV*). We now include the temperature dependencégof
Assuming an opacity given by only free—free transitions [20],

T7/2
g =26-10%

cm.
Z2n,ne

Expressingne = Zn, andn, = p/ Amp, whereAis the atomic weight aneh, is the proton
mass, yields

A? erg
D/ =3.9.10% T2 ) A3
' p2Z3 cm s keV (A-3)

Combining (A.2) and (A.3) yields the ratio,

D/ AN2/InAN /T
o =3219(7) (F) () Ay

We now reason that sinde= O(1), A/Z = O(1), and InA > 2, the factor multiplying
(T#/p?)isof order 8 1CP. Thus, for high temperatures and low densities, radiation diffusio
dominates.
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